

AS78XXA

### Description

The AS78XXA series are three-terminal positive voltage regulators designed for a wide variety of applications including local, on-card regulation.

The AS78XXA are complete with internal current limiting, thermal shutdown protection, and safe-area compensation which make them virtually immune from output overload. If adequate heat sinking is provided, these regulators can deliver output currents of up to 1A.

The AS78XXA are available in TO-220-3, TO-220-3 (2), TO-252-2 (5), TO252 (Type CJ) and TO-263-2 packages.

### Applications

- High-efficiency linear regulators
- Post regulation for switching supplies
- Microprocessor power supplies
- Motherboards
- Telecommunication.

### **1A 3-TERMINAL POSITIVE VOLTAGE REGULATOR**

## Features

- Output Current up to 1A
- Fixed Output Voltages of 5V, 12V, 15V
- Output Voltage Accuracy of ±4% over the Full Temperature Range
- Internal Short-Circuit Current Limiting
- Internal Thermal Overload Protection
- Output Transistor Safe-Area Protection
- Low Load Regulation
- Stable Performance in High Temperature
- Lead-Free Packages: TO-220-3, TO-220-3 (2)
  - Totally Lead-Free; RoHS Compliant (Notes 1 & 3)
- Available in "Green" Packages: TO-220-3, TO-220-3 (2), and TO-263-2
  - Lead-Free Finish; RoHS Compliant (Notes 2 & 3)
  - Halogen and Antimony Free. "Green" Device (Note 4)
- Lead-Free Packages, Available in "Green" Molding Compound: TO-252-2 (5), TO252 (Type CJ)
  - Totally Lead-Free & Fully RoHS Compliant (Notes 1 & 3)
  - Halogen and Antimony Free. "Green" Device (Note 4)
- For automotive applications requiring specific change control (i.e. parts qualified to AEC-Q100/101/104/200, PPAP capable, and manufactured in IATF 16949 certified facilities), please <u>contact us</u> or your local Diodes representative. <u>https://www.diodes.com/quality/product-definitions/</u>
- Notes: 1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant.
  - EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant. All applicable RoHS exemptions applied.
    See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.
  - 4. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.



### **Pin Assignments**





## **Typical Applications Circuit**



## **Pin Descriptions**

| Pin Number | Pin Name | Function       |
|------------|----------|----------------|
| 1          | INPUT    | Voltage Input  |
| 2          | GND      | Ground         |
| 3          | OUTPUT   | Voltage Output |

# **Functional Block Diagram**





### Absolute Maximum Ratings (Note 5)

| Symbol            | Paramete                       | r                               | Rating             | Unit |
|-------------------|--------------------------------|---------------------------------|--------------------|------|
| VIN               | Input Voltage                  |                                 | 36                 | V    |
| T <sub>LEAD</sub> | Lead Temperature (Soldering, 1 | 0sec)                           | +260               | °C   |
| PD                | Power Dissipation              |                                 | Internally Limited | W    |
| TJ                | Operating Junction Temperature | e                               | +150               | °C   |
| T <sub>STG</sub>  | Storage Temperature Range      | Storage Temperature Range       |                    | °C   |
|                   |                                | TO-220-3<br>TO-220-3 (2)        | 60                 |      |
| ALθ               | Thermal Resistance             | TO-252-2 (5)<br>TO252 (Type CJ) | 100                | °C/W |
|                   |                                | TO-263-2                        |                    |      |
| ESD               | ESD (Human Body Model)         | ·                               | 6000               | V    |
| ESD               | ESD (Machine Model)            |                                 | 500                | V    |

Note: 5. Stresses greater than those listed under *Absolute Maximum Ratings* can cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under *Recommended Operating Conditions* is not implied. Exposure to *Absolute Maximum Ratings* for extended periods can affect device reliability.

## **Recommended Operating Conditions**

| Symbol | Parameter                            |         | Min | Max  | Unit |
|--------|--------------------------------------|---------|-----|------|------|
|        |                                      | AS7805A | —   | 25   |      |
| VIN    | Input Voltage                        | AS7812A | —   | 32   | V    |
|        |                                      | AS7815A | —   | 32   |      |
| TJ     | Operating Junction Temperature Range |         | -40 | +125 | °C   |



θյς

Thermal Resistance

Unit

V

mV

mV mA

mΑ

dB

V μV/Vo mΩ A A mV/°C ppm/°C

°C/W

## **Electrical Characteristics**

| Symbol                    | Parameter                  | Conditions                                                                        | Min | Тур  |   |
|---------------------------|----------------------------|-----------------------------------------------------------------------------------|-----|------|---|
|                           |                            | $T_J = +25^{\circ}C$                                                              | 4.9 | 5    |   |
| Vout                      | Output Voltage             | $I_{OUT}$ = 5mA to 1A, V <sub>IN</sub> = 7.5V to 20V<br>P <sub>D</sub> ≤ 15W      | 4.8 | _    |   |
| VRLINE                    | Line Regulation            | V <sub>IN</sub> = 7.5V to 20V<br>I <sub>OUT</sub> = 500mA, T <sub>J</sub> = +25°C | _   | 25   |   |
| Vrload                    | Load Regulation            | $V_{IN} = 10V$ , $I_{OUT} = 5mA$ to 1A<br>T <sub>J</sub> = +25°C                  | _   | 20   |   |
| lq                        | Quiescent Current          | V <sub>IN</sub> = 10V, I <sub>OUT</sub> = 0                                       | _   | 3.2  |   |
| Δlq                       | Quiescent Current Change   | $V_{IN} = 8V$ to 25V, $I_{OUT} = 500$ mA<br>$T_J = +25^{\circ}$ C                 |     | 0.3  |   |
| _                         |                            | $I_{OUT} = 5mA$ to 1A, $T_J = +25^{\circ}C$                                       | _   | 0.08 |   |
| PSRR                      | Ripple Rejection           | V <sub>IN</sub> = 8V to 18V, f = 120Hz<br>I <sub>OUT</sub> = 500mA                |     | 70   |   |
| V <sub>DROP</sub>         | Dropout Voltage            | $\Delta V_{OUT}$ = 1%, I <sub>OUT</sub> = 1A<br>T <sub>J</sub> = +25°C            | —   | 2    |   |
| No                        | Output Noise Voltage       | $f = 10Hz$ to $100kHz$ , $T_A = +25^{\circ}C$                                     | —   | 10   |   |
| Ro                        | Output Resistance          | f = 1kHz                                                                          | —   | 10   |   |
| Isc                       | Short-Circuit Current      | V <sub>IN</sub> = 35V, T <sub>A</sub> = +25°C                                     | _   | 0.05 |   |
| Ірк                       | Peak Output Current        | V <sub>IN</sub> = 10V, T <sub>J</sub> = +25°C                                     | _   | 2.2  |   |
| $\Delta V_{OUT}/\Delta T$ | Output Voltage Temperature | —                                                                                 | _   | 0.4  |   |
| /out/Vout)/∆T             | Coefficient                | —                                                                                 | _   | 80   |   |
|                           |                            |                                                                                   |     | 1    | 1 |

TO-220-3/TO-220-3 (2)

TO-263-2

TO-252-2 (5)/TO252 (Type CJ)

9

16

6

\_\_\_\_

\_

\_\_\_\_

\_

\_



# Electrical Characteristics (continued)

# $\mbox{AS7812A}$ (@ $V_{\mbox{IN}}$ = 19V, $I_{\mbox{OUT}}$ = 1A, $T_{\mbox{J}}$ = -40 to +125°C, unless otherwise specified.)

| Symbol          | Parameter                    | Conditions                                                                         | Min   | Тур  | Max   | Unit   |  |
|-----------------|------------------------------|------------------------------------------------------------------------------------|-------|------|-------|--------|--|
|                 |                              | T <sub>J</sub> = +25°C                                                             | 11.75 | 12   | 12.25 |        |  |
| Vout            | Output Voltage               | $I_{OUT} = 5$ mA to 1A, $V_{IN} = 14.8$ V to 27V<br>$P_D \le 15$ W                 | 11.5  | _    | 12.5  | V      |  |
| Vrline          | Line Regulation              | V <sub>IN</sub> = 14.8V to 27V<br>I <sub>OUT</sub> = 500mA, T <sub>J</sub> = +25°C | —     | 25   | 120   | mV     |  |
| Vrload          | Load Regulation              | $V_{IN} = 19V$ , $I_{OUT} = 5mA$ to $1A$<br>$T_J = +25^{\circ}C$                   | —     | 40   | 120   | mV     |  |
| lq              | Quiescent Current            | VIN = 19V, IOUT = 0                                                                | —     | 3.4  | 6     | mA     |  |
| ΔΙο             | ΔIQ Quiescent Current Change | $V_{IN} = 14.8V$ to 30V, $I_{OUT} = 500$ mA<br>T <sub>J</sub> = +25°C              | —     | 0.3  | 0.8   | mA     |  |
|                 |                              | $I_{OUT} = 5mA$ to 1A, $T_J = +25^{\circ}C$                                        | —     | 0.08 | 0.5   |        |  |
| PSRR            | Ripple Rejection             | V <sub>IN</sub> = 15V to 25V, f = 120Hz<br>I <sub>OUT</sub> = 500mA                | _     | 60   | _     | dB     |  |
| VDROP           | Dropout Voltage              | ΔV <sub>OUT</sub> = 1%, I <sub>OUT</sub> = 1A<br>T <sub>J</sub> = +25°C            | —     | 2    | —     | V      |  |
| No              | Output Noise Voltage         | $f = 10Hz$ to 100kHz, $T_A = +25^{\circ}C$                                         | —     | 10   | —     | μV/Vo  |  |
| Ro              | Output Resistance            | f = 1kHz                                                                           | —     | 11   | _     | mΩ     |  |
| Isc             | Short-Circuit Current        | $V_{IN} = 35V, T_A = +25^{\circ}C$                                                 | —     | 0.2  | _     | А      |  |
| Ірк             | Peak Output Current          | V <sub>IN</sub> = 18V, T <sub>J</sub> = +25°C                                      | _     | 2.2  | _     | А      |  |
| ΔVουτ/ΔΤ        | Output Voltage Temperature   | —                                                                                  | _     | 0.96 | _     | mV/°C  |  |
| (ΔVout/Vout)/ΔT | Coefficient                  | —                                                                                  | _     | 80   | _     | ppm/°C |  |
| 0               | Thermal Desister of          | TO-220-3/TO-220-3 (2)                                                              | —     | 9    | _     | 80 AM  |  |
| өлс             | Thermal Resistance           | TO-252-2 (5)/TO252 (Type CJ)                                                       | _     | 16   | _     | °C/W   |  |



# Electrical Characteristics (continued)

# $\mbox{AS7815A}$ (@ $V_{\mbox{IN}}$ = 23V, $I_{\mbox{OUT}}$ = 1A, $T_{\mbox{J}}$ = -40 to +125°C, unless otherwise specified.)

| Symbol          | Parameter                    | Conditions                                                                         | Min  | Тур  | Max  | Unit              |
|-----------------|------------------------------|------------------------------------------------------------------------------------|------|------|------|-------------------|
|                 |                              | T <sub>J</sub> = +25°C                                                             | 14.7 | 15   | 15.3 |                   |
| Vout            | Output Voltage               | $I_{OUT} = 5mA$ to 1A, $V_{IN} = 17.9V$ to 30V<br>$P_D \le 15W$                    | 14.4 | _    | 15.6 | V                 |
| Vrline          | Line Regulation              | V <sub>IN</sub> = 17.9V to 30V<br>I <sub>OUT</sub> = 500mA, T <sub>J</sub> = +25°C | _    | 35   | 150  | mV                |
| Vrload          | Load Regulation              | $V_{IN} = 23V$ , $I_{OUT} = 5mA$ to 1A<br>$T_J = +25^{\circ}C$                     | —    | 70   | 150  | mV                |
| lq              | Quiescent Current            | VIN = 23V, IOUT = 0                                                                | —    | 3.4  | 6    | mA                |
| ΔΙο             | ΔIo Quiescent Current Change | $V_{IN} = 17.9V$ to 30V, $I_{OUT} = 500$ mA<br>T <sub>J</sub> = +25°C              | _    | 0.3  | 0.8  | mA                |
| _               |                              | $I_{OUT} = 5mA$ to 1A, $T_J = +25^{\circ}C$                                        | —    | 0.08 | 0.5  |                   |
| PSRR            | Ripple Rejection             | V <sub>IN</sub> = 18.5V to 28.5V, f = 120Hz<br>I <sub>OUT</sub> = 500mA            | _    | 58   | _    | dB                |
| Vdrop           | Dropout Voltage              | $\Delta$ Vout = 1%, Iout = 1A, T <sub>J</sub> = +25°C                              | —    | 2    | —    | V                 |
| No              | Output Noise Voltage         | $f = 10Hz$ to 100kHz, $T_A = +25^{\circ}C$                                         | —    | 10   | _    | μV/V <sub>O</sub> |
| Ro              | Output Resistance            | f = 1kHz                                                                           | —    | 11   | _    | mΩ                |
| Isc             | Short-Circuit Current        | V <sub>IN</sub> = 35V, T <sub>A</sub> = +25°C                                      | _    | 0.2  | _    | А                 |
| I <sub>PK</sub> | Peak Output Current          | $V_{IN} = 21V, T_J = +25^{\circ}C$                                                 |      | 2.2  |      | А                 |
| ΔVουτ/ΔΤ        | Output Voltage Temperature   | —                                                                                  | _    | 1.2  |      | mV/°C             |
| (Δνουτ/νουτ)/Δτ | Coefficient                  |                                                                                    | _    | 80   | _    | ppm/°C            |
| 0               | The second Desciptions of    | TO-220-3/TO-220-3 (2)                                                              | _    | 9    | _    |                   |
| θις             | Thermal Resistance           | TO-252-2 (5)/TO252 (Type CJ)                                                       | —    | 16   | _    | °C/W              |



### **Performance Characteristics**

#### Peak Output Current vs. Input/Output Differential Voltage



#### **Output Voltage vs. Output Current**



#### **Quiescent Current vs. Junction Temperature**



**Output Voltage vs. Junction Temperature** 



Output Voltage vs. Input Voltage



**Ripple Rejection vs. Frequency** 





25

20

15 10

0

-50

-100

-150

V<sub>IN</sub> (5V/Div)

ΔVour (50mV/Div)

## Performance Characteristics (continued)



Line Transient

AS7805A

(Conditions: Iout = 500mA, Cout = 0.1µF)

2

Time (100µs/Div)

#### **Dropout Voltage vs. Junction Temperature**

Power Dissipation vs. Junction Temperature



Load Transient

(Conditions:  $V_{IN} = 10V$ ,  $C_{IN} = 0.33\mu$ F,  $C_{OUT} = 0.1\mu$ F)





## **Ordering Information**



|                        | Orderable Part Number | Deckare (Nete C)         | Output         | RoHS<br>Compliant   | Marking ID  | Pac  | king        |
|------------------------|-----------------------|--------------------------|----------------|---------------------|-------------|------|-------------|
|                        | Orderable Part Number | Package (Note 6)         | Voltage<br>(V) | Lead Free/<br>Green | Marking ID  | Qty. | Carrier     |
| Pb<br>Lead-free Green  | AS7805ADTR-E1         | TO-252-2 (5)             | 5              | Green               | AS7805AD-E1 | 2500 | Tape & Reel |
| Pb,<br>Lead-free Green | AS7805ADTR-G1         | TO252 (Type CJ)          | 5              | Green               | AS7805AD-G1 | 2500 | Tape & Reel |
| (Pb)<br>Green          | AS7805AT-E1           | TO-220-3<br>TO-220-3 (2) | 5              | Green               | AS7805AT-E1 | 1000 | Tube        |
| (Pb)<br>Green          | AS7805ASTR-G1         | TO-263-2                 | 5              | Green               | AS7805AS-G1 | 800  | Tape & Reel |

|                        | Orderable Part Number | Deckare (Nete C)                | Output         | RoHS<br>Compliant   | Marking ID  | Pac  | king        |
|------------------------|-----------------------|---------------------------------|----------------|---------------------|-------------|------|-------------|
|                        | Orderable Part Number | Package (Note 6)                | Voltage<br>(V) | Lead Free/<br>Green | Marking ID  | Qty. | Carrier     |
| Pb,<br>Lead-free Green | AS7812ADTR-G1         | TO-252-2 (5)<br>TO252 (Type CJ) | 12             | Green               | AS7812AD-G1 | 2500 | Tape & Reel |
| Lead-Free              | AS7812AT-E1           | TO-220-3<br>TO-220-3 (2)        | 12             | Lead Free           | AS7812AT-E1 | 1000 | Tube        |
| Pb<br>Lead-free Green  | AS7815ADTR-G1         | TO-252-2 (5)<br>TO252 (Type CJ) | 15             | Green               | AS7815AD-G1 | 2500 | Tape & Reel |
| Lead-Free              | AS7815AT-E1           | TO-220-3<br>TO-220-3 (2)        | 15             | Lead Free           | AS7815AT-E1 | 1000 | Tube        |

Note: 6. For packaging details, go to our website at: https://www.diodes.com/design/support/packaging/diodes-packaging/.



### **Marking Information**

#### (1) TO-220-3/TO-220-3 (2)

(Front View)







First and Second Lines: Logo and Marking ID (See Ordering Information) Third Line: Date Code Y: Year WW: Work Week of Molding A: Assembly House Code XX: Internal Code

(2) TO252 (Type CJ)/TO-252-2 (5)





First and Second Lines: Logo and Marking ID (See Ordering Information) Third Line: Date Code Y: Year WW: Work Week of Molding A: Assembly House Code XX: Internal Code

(3) TO-263-2

(Top View)



First and Second Lines: Logo and Marking ID (See Ordering Information) Third line: Date Code Y: Year WW: Work Week of Molding A: Assembly House Code XX: 7<sup>th</sup> and8<sup>th</sup> Digits of Batch No.



### Package Outline Dimensions (All dimensions in mm(inch).)

Please see http://www.diodes.com/package-outlines.html for the latest version.

#### (1) Package Type: TO-220-3



Option 2



# Package Outline Dimensions (continued) (All dimensions in mm(inch).)

Please see http://www.diodes.com/package-outlines.html for the latest version.

#### (2) Package Type: TO-220-3 (2)





### Package Outline Dimensions (continued) (All dimensions in mm(inch).)

Please see http://www.diodes.com/package-outlines.html for the latest version.

#### (3) Package Type: TO-252-2 (5)





# Package Outline Dimensions (continued) (All dimensions in mm(inch).)

Please see http://www.diodes.com/package-outlines.html for the latest version.

#### (4) Package Type: TO252 (Type CJ)



|     | TO252     |          |     |  |  |  |  |  |  |  |
|-----|-----------|----------|-----|--|--|--|--|--|--|--|
|     | (Type CJ) |          |     |  |  |  |  |  |  |  |
| Dim | Min       | Max      | Тур |  |  |  |  |  |  |  |
| Α   | 2.200     | 2.400    |     |  |  |  |  |  |  |  |
| A1  | 0.000     | 0.127    |     |  |  |  |  |  |  |  |
| b   | 0.635     | 0.770    |     |  |  |  |  |  |  |  |
| b3  | 5.100     | 5.460    |     |  |  |  |  |  |  |  |
| С   | 0.460     | 0.580    |     |  |  |  |  |  |  |  |
| D   | 6.000     | 6.200    |     |  |  |  |  |  |  |  |
| D2  | 5         | .250 RE  | F   |  |  |  |  |  |  |  |
| Е   | 6.500     | 6.700    |     |  |  |  |  |  |  |  |
| E2  | 4         | .830 RE  | F   |  |  |  |  |  |  |  |
| е   | 2.186     | 2.386    |     |  |  |  |  |  |  |  |
| h   | 0.000     | 0.300    |     |  |  |  |  |  |  |  |
| н   | 9.712     | 10.312   |     |  |  |  |  |  |  |  |
| L   | 1.400     | 1.700    |     |  |  |  |  |  |  |  |
| L1  | 2         | .900 RE  | F   |  |  |  |  |  |  |  |
| L2  | 0.600     | 1.000    |     |  |  |  |  |  |  |  |
| L3  | 1         | .600 RE  | F   |  |  |  |  |  |  |  |
| Ø   | 1.100     | 1.300    |     |  |  |  |  |  |  |  |
| θ   | 0°        | 8°       |     |  |  |  |  |  |  |  |
| AI  | l Dimen   | sions in | mm  |  |  |  |  |  |  |  |

#### (5) Package Type: TO-263-2





### Suggested Pad Layout

Please see http://www.diodes.com/package-outlines.html for the latest version.

(1) Package Type: TO252 (Type CJ)



| Dimensions | Z            | X1          | X2 = Y2     | Y1          | G           | E1          |
|------------|--------------|-------------|-------------|-------------|-------------|-------------|
|            | (mm)/(inch)  | (mm)/(inch) | (mm)/(inch) | (mm)/(inch) | (mm)/(inch) | (mm)/(inch) |
| Value      | 11.600/0.457 | 1.500/0.059 | 7.000/0.276 | 2.500/0.098 | 2.100/0.083 | 2.300/0.091 |



### Suggested Pad Layout (continued)

Please see http://www.diodes.com/package-outlines.html for the latest version.

#### (2) Package Type: TO-252-2 (5)



| Dimensions | Z            | X1          | X2 = Y2     | Y1          | G           | E1          |
|------------|--------------|-------------|-------------|-------------|-------------|-------------|
|            | (mm)/(inch)  | (mm)/(inch) | (mm)/(inch) | (mm)/(inch) | (mm)/(inch) | (mm)/(inch) |
| Value      | 11.600/0.457 | 1.500/0.059 | 7.000/0.276 | 2.500/0.098 | 2.100/0.083 | 2.300/0.091 |



### Suggested Pad Layout (continued)

Please see http://www.diodes.com/package-outlines.html for the latest version.

#### (3) Package Type: TO-263-2



| Dimensions | Z            | X1          | X2          | X3           |
|------------|--------------|-------------|-------------|--------------|
|            | (mm)/(inch)  | (mm)/(inch) | (mm)/(inch) | (mm)/(inch)  |
| Value      | 16.760/0.660 | 1.200/0.047 | 8.540/0.336 | 10.540/0.415 |
| Dimensions | Y1           | Y2          | Y3          | E            |
|            | (mm)/(inch)  | (mm)/(inch) | (mm)/(inch) | (mm)/(inch)  |
| Value      | 3.830/0.151  | 8.560/0.337 | 3.000/0.118 | 5.080/0.200  |

#### **Mechanical Data**

- Moisture Sensitivity: Level 3 per J-STD-020
  - Terminals: Finish—Matte Tin Plated Leads, Solderable per MIL-STD-202, Method 208 🕄
- Weight:
  - TO-252-2 (5)/TO252 (Type CJ): 0.312 grams (Approximate)
  - TO-220-3/TO-220-3 (2): 1.925 grams (Approximate)
  - TO-263-2: 1.412 grams (Approximate)



#### IMPORTANT NOTICE

1. DIODES INCORPORATED (Diodes) AND ITS SUBSIDIARIES MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO ANY INFORMATION CONTAINED IN THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

2. The Information contained herein is for informational purpose only and is provided only to illustrate the operation of Diodes' products described herein and application examples. Diodes does not assume any liability arising out of the application or use of this document or any product described herein. This document is intended for skilled and technically trained engineering customers and users who design with Diodes' products. Diodes' products may be used to facilitate safety-related applications; however, in all instances customers and users are responsible for (a) selecting the appropriate Diodes products for their applications, (b) evaluating the suitability of Diodes' products for their intended applications, (c) ensuring their applications, which incorporate Diodes' products, comply the applicable legal and regulatory requirements as well as safety and functional-safety related standards, and (d) ensuring they design with appropriate safeguards (including testing, validation, quality control techniques, redundancy, malfunction prevention, and appropriate treatment for aging degradation) to minimize the risks associated with their applications.

3. Diodes assumes no liability for any application-related information, support, assistance or feedback that may be provided by Diodes from time to time. Any customer or user of this document or products described herein will assume all risks and liabilities associated with such use, and will hold Diodes and all companies whose products are represented herein or on Diodes' websites, harmless against all damages and liabilities.

4. Products described herein may be covered by one or more United States, international or foreign patents and pending patent applications. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks and trademark applications. Diodes does not convey any license under any of its intellectual property rights or the rights of any third parties (including third parties whose products and services may be described in this document or on Diodes' website) under this document.

Diodes' products are provided subject Diodes' Standard Terms and Conditions of to Sale (https://www.diodes.com/about/company/terms-and-conditions/terms-and-conditions-of-sales/) or other applicable terms. This document does not alter or expand the applicable warranties provided by Diodes. Diodes does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel.

6. Diodes' products and technology may not be used for or incorporated into any products or systems whose manufacture, use or sale is prohibited under any applicable laws and regulations. Should customers or users use Diodes' products in contravention of any applicable laws or regulations, or for any unintended or unauthorized application, customers and users will (a) be solely responsible for any damages, losses or penalties arising in connection therewith or as a result thereof, and (b) indemnify and hold Diodes and its representatives and agents harmless against any and all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim relating to any noncompliance with the applicable laws and regulations, as well as any unintended or unauthorized application.

7. While efforts have been made to ensure the information contained in this document is accurate, complete and current, it may contain technical inaccuracies, omissions and typographical errors. Diodes does not warrant that information contained in this document is error-free and Diodes is under no obligation to update or otherwise correct this information. Notwithstanding the foregoing, Diodes reserves the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes.

8. Any unauthorized copying, modification, distribution, transmission, display or other use of this document (or any portion hereof) is prohibited. Diodes assumes no responsibility for any losses incurred by the customers or users or any third parties arising from any such unauthorized use.

9. This Notice may be periodically updated with the most recent version available at <a href="https://www.diodes.com/about/company/terms-and-conditions/important-notice">https://www.diodes.com/about/company/terms-and-conditions/important-notice</a>

The Diodes logo is a registered trademark of Diodes Incorporated in the United States and other countries. All other trademarks are the property of their respective owners. © 2024 Diodes Incorporated. All Rights Reserved.

www.diodes.com