

JIANGSU CHANGJING ELECTRONICS TECHNOLOGY CO., LTD.

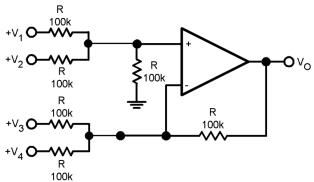
Low Power Single Op Amp

LM321

PRODUCT DESCRIPTION

The LM321 brings performance and economy to low power systems. With a high unity gain frequency and a guaranteed0.4V/ μ s slew rate, the quiescent current is only 430 μ A/amplifier (5V). The input common mode range includes ground and therefore the device is able to operate in single supply applications as well as in dual supply applications. It is also capable of comfortably driving large capacitive loads. The LM321 is available in the SOT package. Overall the LM321 is a low power, wide supply range performance op amp that can be designed into a wide range of applications at an economical price without sacrificing valuable board space.

FEATURES


- Gain-Bandwidth product: 1MHz
- (VCC = 5V, TA = 25°C. Typical values unless specified).
- Low supply current:430μA
- Low input bias current:45nA
- Wide supply voltage range
- Operates on 24V or ±12V Supplies
- Stable with high capacitive loads
- Small Packaging: LM321 Available in SOT-23-5L。

APPLICATIONS

- Chargers
- Power supplies
- Industrial: controls, instruments
- Desktops
- . Communications infrastructure

APPLICATION Circuit

DC Summing Amplifier (Vin's≥0Vdc,Vo≥Vdc)

Where: Vo=V₁+V₂-V₃-V₄,(V₁+V₂) ≥(V₃+V₄) to keep Vo≥0V_{DC}

PIN CONFIGURATIONS

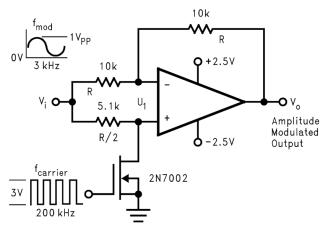
LM321 (Top View) +IN 1 -V_s 2 -IN 3

ELECTRICAL CHARACTERISTICS

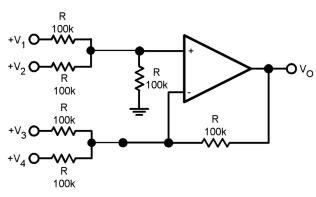
ABSOLUTE MAXIMUM RATINGS

Supply Voltage, V+ to V	24V or ±12V
Input Voltage	
Input Current (VIN<-0.3V)	50mA
Output Short Circuit to GND(V≤15V、Ta=25℃)	Continuous
Storage Temperature Range	–65℃ to +150℃
Junction Temperature	1 50 ℃
Operating Temperature Range	40°C to +85°C
Lead Temperature Range (Soldering 10 sec)	260 ℃

NOTE:

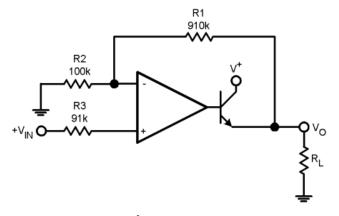

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

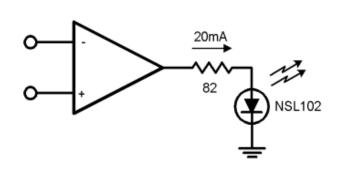
ELECTRICAL CHARACTERISTICS


(Unless otherwise specified, all limits guaranteed for at Tamb=25°C, Vcc=5V)

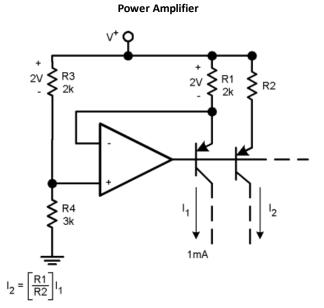
Parameter		Conditions		value			Haita
				Min	Тур	Max	Units
Input Offset Vo	ltage				±2	±5	mV
Input Bias Curre	ent	IIN(+) or IIN(-),VCM=0V			±45	±250	nA
Input Offset Cu	rrent	IIN(+) - IIN(-),VCM=0V			±3	±50	nA
Input Common Voltage Range		Ta=25°C,V ⁺ =24V		0		Vcc -1.5	V
Supply Current		lout-0	Vcc =24V		1	2	mA
		lout=0	Vcc =5V		0.5	1.2	mA
Large Signal Voltage Gain		Vcc =15V,Ta=25°C,RL≥2kΩ(Vo=1~11V)		25	100		V/mV
Common Mode Rejection Ratio		DC,Ta=25°C,VCM=0~Vcc-1.5V		65	90		dB
Power Supply Rejection Ratio DC,Ta=25°C,Vcc=5~24V		24V	65	100		dB	
Output Current	Sourcing	VIN(+)=1V,VIN(-)=0V,Vcc=15V,Vo=2V		20	40		mA
Output Current Sinking		VIN(-)=1V,VIN(+)=0V	v, Vo=2V	10	15		mA
		Vcc=15V	Vo=200mV	12	50		μA
Output Short to Ground	Circuit	Vcc=15V			40	60	mA
Slew Rate $ V+ = 15V, RL = 2k\Omega, VIN = 0.5 $ to 5V CL = 100pF			0.4		V/µs		
Output voltage swing	VOH	Vcc=24V	RL=2kΩ	22			V
		Vcc=24V	RL=10kΩ	22			V
	VOL	Vcc=5V, RL=10kΩ			5	20	mV

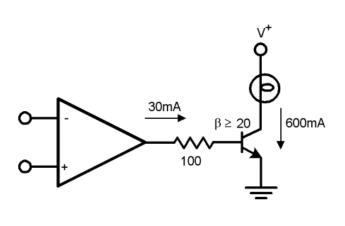
TYPICAL APPLICATIONS


Amplitude Modulator Circuit

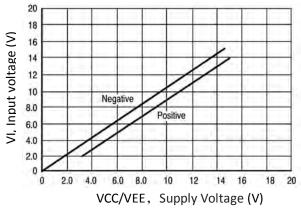

Where: $V_0=V_1+V_2-V_3-V_4$, $(V_1+V_2) \ge (V_3+V_4)$ to keep $V_0 \ge 0$

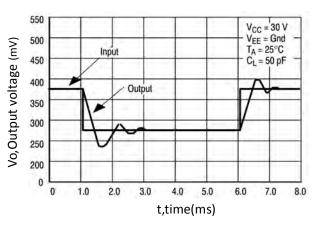
DC Summing Amplifie


(Vin's≥0Vdc,Vo≥Vdc)


 $V_0=0V_Dc$ for $V_{IN}=0V_Dc$, $A_V=10$

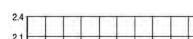
LED Driver

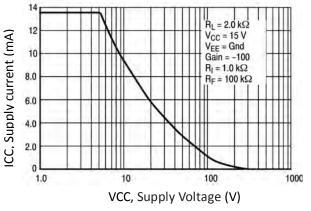



Fixed Current Sources

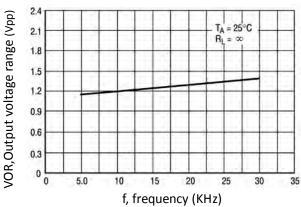
Lamp Driver

TYPICAL PERFORMANCE CHARACTERISTICS

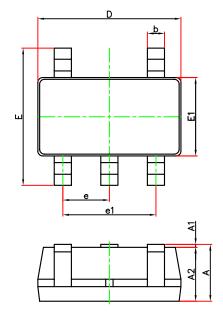


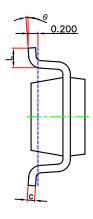


Input voltage range

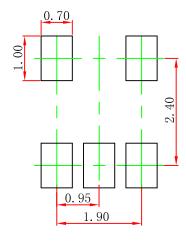

Small signal voltage follower impulse response

(same direction)




Supply current (static power consumption)

Large signal frequency response


SOT-23-5L Package Outline Dimensions

Complete al	Dimensions In Millimeters		Dimensions In Inches			
Symbol	Min.	Max.	Min.	Max.		
Α	1.050	1.250	0.041	0.049		
A1	0.000	0.100	0.000	0.004		
A2	1.050	1.150	0.041	0.045		
b	0.300	0.500	0.012	0.020		
С	0.100	0.200	0.004	0.008		
D	2.850	2.990	0.112	0.118		
E	2.690	2.990	0.106	0.118		
E1	1.530	1.670	0.060	0.066		
е	0.950(BSC)		0.037	0.037(BSC)		
e1	1.800	2.000	0.071	0.079		
L	0.300	0.600	0.012	0.024		
θ	0°	8°	0°	8°		

SOT-23-5L Suggested Pad Layout

- Note:
 1.Controlling dimension:in millimeters.
 2.General tolerance:± 0.05mm.
 3.The pad layout is for reference purposes only.

DISCLAIMER

IMPORTANT NOTICE, PLEASE READ CAREFULLY

The information in this data sheet is intended to describe the operation and characteristics of our products. JSCJ has the right to make any modification, enhancement, improvement, correction or other changes to any content in this data sheet, including but not limited to specification parameters, circuit design and application information, without prior notice.

Any person who purchases or uses JSCJ products for design shall: 1. Select products suitable for circuit application and design; 2. Design, verify and test the rationality of circuit design; 3. Procedures to ensure that the design complies with relevant laws and regulations and the requirements of such laws and regulations. JSCJ makes no warranty or representation as to the accuracy or completeness of the information contained in this data sheet and assumes no responsibility for the application or use of any of the products described in this data sheet.

Without the written consent of JSCJ, this product shall not be used in occasions requiring high quality or high reliability, including but not limited to the following occasions: medical equipment, automotive electronics, military facilities and aerospace. JSCJ shall not be responsible for casualties or property losses caused by abnormal use or application of this product.

Official Website: www.jscj-elec.com

Copyright © JIANGSU CHANGJING ELECTRONICS TECHNOLOGY CO., LTD.